MR 82-13

Effects of Beach Nourishment on the

 Nearshore Environment in Lake Huron at Lexington Harbor (Michigan) byRobert T. Nester and Thomas P. Poe

MISCELLANEOUS REPORT NO. 82-13
NOVEMBER 1982

Approved for public release; distribution unlimited.

Prepared for
U.S. ARMY, CORPS OF ENGINEERS COASTAL ENGINEERING

RESEARCH CENTER

Kingman Building

Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are available from:

```
National Technical Information Service
ATTN: Operations Division
5 2 8 5 \text { Pomt Royal Road}
Springfield, Virginia 22161
```

Contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings in this report are not to be construed as an official Department of the Armv noaition unless so designarn. ${ }^{2}$

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterod)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. MR 82-13	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) EFFECTS OF BEACH NOURISHMENT ON THE NEARSHORE ENVIRONMENT IN LAKE HURON AT LEXINGTON HARBOR (MICHIGAN)	5. TYPE OF REPORT \& PERIOD COVERED Miscellaneous Report 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) Robert T. Nester Thomas P. Poe	8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Great Lakes Fishery Laboratory U.S. Fish and Wildlife Service Ann Arbor, MI 48106	10. PROGRAM ELEMENT, PROJECT, TASK AREA \& WORK UNIT NUMBERS G31533
11. CONTROLLING OFFICE NAME AND ADDRESS Department of the Army Coastal Engineering Research Center (CERRE-CE) Kingman Building, Fort Belvoir, VA 22060	12. REPORT DATE November 1982 13. NUMBER OF PAGES 56
14. MONSTORING AGENCY NAME \& ADDRESS(If difforent from Controlling Offico)	15. SECURITY CLASS. (of thia roport) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Roport)
17. DISTRIBUTION STATEMENT (of the abstract anterod in Block 20, if different from Report)

Approved for public release; distribution unlimited.
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverte side If neceseary and identlfy by block number)

Beach nourishment Biological effects

Lake Huron
Lexington Harbor, Michigan

In October 1980 the U.S. Army Corps of Engineers conducted a beach nourishment project at the Lexington (Michigan) Harbor on the southwest shore of Lake Huron, a project designed to mitigate beach erosion attributable to the installation of the harbor. In response to a request from the Coastal Engineering Research Center (CERC), the U.S. Fish and Wildife Service's Great Lakes Fishery Laboratory conducted a Corps-funded study from June 1980 to October 1981 along a 8.4-kilometer segment of shoreline adjacent to the harbor to determine the effect (continued)
of the Corps' beach nourishment project on the nearshore aquatic environment. The study performed by the service included aerial photographic surveys of the study area; measurements of dissolved oxygen, turbidity, and suspended particulate matter levels; and collection of lake bottom sediments, macrozoobenthos and fish.

Analysis of the aerial photographs showed that the beach face profile changed markedly during the study as a result of beach nourishment. Dredging of about 19,000 cubic meters of beach sediment from an accretion area adjacent to the harbor's north breakwater caused the beach face to recede, while deposition of this sediment on a feeder beach south of the harbor caused the beach face there to extend lakeward. Deposition on a second feeder beach south of the harbor of about 35,000 cubic meters of sediment from a land borrow site caused the beach face at the second feeder beach to extend lakeward. One year after the beach nourishment project was completed the beach face in the accretion area had returned to its predredged location, while the beach face south of the harbor still occupied a position similar to that observed at the completion of the beach nourishment project in October 1981. Analysis of the other data collected revealed no change in the particle-size distribution of the bottom sediments, the water quality, or the distribution and abundance of macrozoobenthos and fish in the study area that could be attributed to the Corps' beach nourishment project. It is concluded, therefore, that the beach nourishment project conducted at Lexington Harbor in October 1980 had no significant adverse impact on the nearshore aquatic environment in the study area.

PREFACE

This report provides coastal engineers the results of a study conducted by U.S. Fish and Wildlife Service's Great Lakes Fishery Laboratory on the effect of beach nourishment activities on the nearshore aquatic environment in the vicinity of Lexington Harbor. The work was carried out under the U.S. Army Coastal Engineering Research Center's (CERC) Foredune Ecology work unit, Environmental Impact Program, Coastal Engineering Area of Civil Works Research and Development.

The report was prepared by Robert T. Nester and Thomas P. Poe, Research Fishery Geologists, U.S. Fish and Wildlife Service, Ann Arbor, Michigan, under CERC agreement No. W74RCV CERC 80-45. The authors acknowledge E.J. Pullen, T.A. Edsall, D. Les, C. Mousigian, F. Koehler, W. Porak, J. French, III, and R. Sayers, Jr., for their advice and assistance.
E.J. Pullen, Chief, Coastal Ecology Branch, served as contract monitor for this report, under the general supervision of Mr. R.P. Savage, Chief, Research Division.

Technical Director of CERC was Dr. Robert W. Whalin, P.E., upon publication of the report.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as supplemented by Public Law 172, 88th Congress, approved 7 November 1963.

Page
CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) 6
I INTRODUCTION 7
II METHODS AND MATERIALS 7

1. Beach Face Profile. 7
2. Sampling Locations. 13
3. Sampling Periods. 13
4. Substrate 13
5. Water Quality 14
6. Macrozoobenthos 14
7. Fish 15
III RESULTS 15
8. Beach Face Profile. 15
9. Substrate 16
10. Water Quality 18
11. Macrozoobenthos 18
12. Fish. 21
IV DISCUSSION 21
13. Beach Face Profile. 21
14. Substrate 25
15. Water Quality 25
16. Macrozoobenthos 26
17. Fish 26
V CONCLUSION 27
LITERATURE CITED 28
APPENDIX
A PARTICLE-SIZE DISTRIBUTION DATA 31
B WATER QUALITY DATA 35
C MACROZOOBENTHOS DATA 39
D FISH DATA (GILLNET) 49
E FISH DATA (BEACH SEINE) 53
TABLES
1 Percentage composition by weight of the fine gravel-very fine sand substrate fractions in Ponar grab samples 17
2 Results of Friedman's test comparing particle-size distribution among grab samples taken at station 1 on transects I to VI. 17
3 Results of Friedman's test comparing particle-size distribution among grab samples taken at station 1 to 4 combined on transects I to VI 17
4 Taxonomic composition and relative abundance of macrozoobenthos collected by Ponar grab 19
5 Density of oligochaetes 20
6 Density of chironomids 20
7 Morisita's index values ($C \lambda$) showing the degree of similarity of the macrozoobenthos community by station, between sampling periods. 22
8 Species composition and relative abundance of fish 23
9 Gillnet catches for all species combined 24
10 Beach seine catches for all species combined 24
FIGURES
1 Lexington Harbor, 3 December 1980. 8
2 The study area with transects and sampling stations indicated 9
3 Lexington Harbor, 16 June 1980 10
4 Lexington Harbor, 3 December 1980 11
5 Lexington Harbor, 6 December 1981 12
U.S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	by	To obtain
inches	25.4	millimeters
	2.54	centimeters
square inches	6.452	square centimeters
cubic inches	16.39	cubic centimeters
feet	30.48	centimeters
	0.3048	meters
square feet	0.0929	square meters
cubic feet	0.0283	cubic meters
```yards square yards cubic yards```	0.9144	meters
	0.836	square meters
	0.7646	cubic meters
miles square miles	1.6093	kilometers
	259.0	hectares
knots	1.852	kilometers per hour
acres	0.4047	hectares
foot-pounds	1.3558	newton meters
millibars	$1.0197 \times 10^{-3}$	kilograms per square centimeter
ounces	28.35	grams
pounds	453.6	grams
	0.4536	kilograms
ton, long	1.0160	metric tons
ton, short	0.9072	metric tons
degrees (angle)	0.01745	radians
Fahrenheit degrees	5/9	Celsius degrees or Kelvins ${ }^{1}$

[^0]
# EFFECTS OF BEACH NOURISHMENT ON THE NEARSHORE ENVIRONMENT IN LAKE HURON AT LEXINGTON HARBOR (MICHIGAN) 

by<br>Robert T. Nester<br>and<br>Thomas P. Poe

## I. INTRODUCTION

The U.S. Army Corps of Engineers conducted a beach nourishment project at the Lexington Harbor at Lexington, Michigan, on the southwest shore of Lake Huron in October 1980 (Fig. 1). The project was designed to mitigate shoreline exosion attributable to the installation of the harbor which interrupted the littoral drift of beach sediments and accelerated erosion of the shoreline south of the harbor. Nourishment was accomplished by establishing a feeder beach on the lake foreshore immediately south of the harbor in the area of heaviest erosion. About 54,000 cubic meters of sediment was deposited to create the feeder beach. About 19,000 cubic meters of this sediment was dredged from an accretion area at the shoreward end at the harbor's north breakwater and pumped to the beach; the remainder was obtained from a nearby commercial borrow site on land and trucked to the beach. In response to a request from the U.S. Army Coastal Engineering Research Center (CERC), the U.S. Fish and Wildlife Service's Great Lakes Fishery Laboratory conducted a study to determine the effect of the beach nourishment activities on the nearshore aquatic environment in the vicinity of the harbor. Although the effects of beach nourishment activities on the ecology of marine coastal areas have received considerable attention in recent years (Cronin, Gunter, and Hopkins, 1971; Courtenay, et al., 1974; Parr, Diener, and Lacy, 1978; Marsh, et al., 1978, 1980; Culter and Mahadevan, 1982), the present report represents the first effort to identify and evaluate such effects in a Great Lakes coastal area.

## II. METHODS AND MATERIALS

## 1. Beach Face Profile.

A number of aerial photographs were taken throughout the study area, and in particular in the Corps' beach nourishment project area immediately adjacent to the harbor, to describe the beach face profile. Figure 1 is an oblique view of the harbor on 3 December 1980 from an altitude of about 450 meters. Figure 2 is an overlapping series of aerial photographs taken of the shoreline of the entire study area on 16 June 1980 from an altitude of about 1,800 meters. This figure shows both the location of the transects with sampling stations and the beach face profile of the study area. Figures 3, 4, and 5 are aerial photographs taken of the harbor area on 16 June 1980,3 December 1980, and 6 December 1981 from an altitude of about 450 meters showing changes in the beach face profile in the area where the nourishment activity occurred.



Figure 2. The study area with transects and sampling stations indicated.


Figure 3. Lexington Harbor, 16 June 1980. A is the accretion area at shoreward end of north breakwall; $B$ and $C$ indicate erosion along the shoreline south of harbor.


Figure 4. Lexington Harbor, 3 December 1980. A is the accretion area 2 months after removal of about 19,000 cubic meters of beach sediment; $B$ is the part of the beach that received the 19,000 cubic meters of beach sediment from the accretion area; and $C$ is the part of the feeder beach 2 months after receiving about 35,000 cubic meters of sediment from a nearby land borrow site.


Figure 5. Lexington Harbor, 6 December 1981. A is the accretion area 14 months after removal of about 19,000 cubic meters of beach sediment; $B$ is the part of the feeder beach that received the 19,000 cubic meters of beach sediment from the accretion area; $C$ is the part of the feeder beach 14 months after receiving about 35,000 cubic meters of sediment from a nearby land borrow site.

## 2. Sampling Locations.

Sampling was conducted at four stations located on each of six transects that were established perpendicular to the shoreline in the vicinity of the Lexington Harbor (Fig. 2). Transects I and VI were located respectively north and south of the harbor in reference areas outside the immediate influence of the beach nourishment activities; transect II was located immediately north of the harbor in a beach sediment accretion area created by the installation of the harbor's north breakwater; and transects III, IV, and V were located south of the harbor in the area subject to the heaviest erosion. Permanent structures on land (e.g., buildings) were used as reference points to fix the location of each transect. The four stations on each transect were located as follows: station 1 was established on the 0.5 -meter depth contour in the zone of potentially heaviest surf action within 3 to 6 meters of the shoreline; station 2 was on the 2 -meter depth contour just lakeward of the zone of heaviest surf action about 90 meters offshore; station 3 was on the 4 -meter depth contour about 240 meters offshore; and station 4 was on the 5 -meter depth contour about 460 meters offshore.

## 3. Sampling Periods.

Sampling was conducted at all stations on 9 to 13 June, 21 to 25 July, and 14 to 21 October 1980 and on 8 to 11 June, 13 to 16 July, and 5 October to 13 November 1981. The October 1981 sampling period was extended by a series of fall storms which began on 9 October and prevented sampling with the beach seine until 12 and 13 November. The June and July 1980 sampling periods were chosen to document conditions in the study area before the beach nourishment project was conducted in early October 1980. The October 1980 sampling period was chosen to describe conditions immediately after the beach nourishment project was completed. Sampling in 1981 was designed to document the changes and the level of recovery that occurred in the 8 to 12 months following completion of the beach nourishment project.

## 4. Substrate.

To characterize the substrate throughout the study area, the lake bottom at each station was observed from the vessel deck whenever conditions permitted. The lake bottom was also observed at several locations in the study area using an underwater television system (Video Sciences Incorporated, Model 400495).

Samples of sediment to be used for particle-size determinations were collected with a Ponar grab. One grab sample was taken at each of the stations during each of the sampling periods; a total of 144 samples were taken. In the laboratory the sediment in each sample was separated into five fractions following the techniques for dry sieving in the IBP Handbook No. 16 (Buckhanan, 1971). These fractions were fine gravel, 8 to 2 millimeters in diameter (retained by a No. 10 sieve); course sand, 2 to 0.5 millimeter in diameter (retained by a No. 35 sieve); medium sand, 0.5 to 0.25 millimeter in diameter (retained by a No. 60 sieve); fine sand, 0.25 to 0.125 millimeter in diameter (retained by a No. 120 sieve); and very fine sand, 0.125 to 0.062 millimeter in diameter (retained by a No. 230 sieve). Only fractions smaller than 8 millimeters in diameter and larger than 0.062 millimeter in diameter were retained for analysis.

The sediment size data were analyzed using Friedman's test (after Zar, 1974), a nonparametric test which requires only ordinal scaling of data. This test was used to evaluate (1) differences in relative particle size distribution among all six transects (data for all four stations on each transect were combined for analysis) within each sampling period; and (2) differences in relative particle-size distribution at station 1 among all six transects within each sampling period. The percent composition values were ranked within each particle-size category, and the ranked values were summed for each transect to calculate:

$$
x_{r}^{2}=\frac{12}{b a(a+1)} \sum_{i=1}^{n} R_{i}^{2}-3 b(a+1)
$$

where $a$ is the number of treatments (columns), $b$ the number of blocks, and $R_{1}^{2}$ the sum of the ranks squared in each column. Critical table values for combinations of $a$ and $b$ were found in Zar (1974).
5. Water Quality.

At the surface of station 1 and at the surface and bottom of stations 2, 3 , and 4 on each transect during each sampling period, water temperature and dissolved oxygen concentration were measured with a YS1 Model 51B meter and water samples to be used for determination of turbidity and suspended solids were collected with a Van Dorn bottle. The samples were iced and stored in an insulated container for analysis in the laboratory. Turbidity was measured with an H F Instruments Ltd. Turbidimeter, Model 1000. The weights of suspended solids were determined by filtering a known volume of each sample under vacuum on a tared Whatman glass-fiber filter paper, drying the filter paper at $40^{\circ}$ Celsius for 24 hours and weighing the tared paper.

## 6. Macrozoobenthos.

Macrozoobenthos samples were collected with a Ponar grab. Three grab samples were collected at each station during each of the six sampling periods. Previous macrozoobenthos studies (Schuytema and Powers, 1966) in the nearshore waters of Lake Huron have indicated that three replicate grabs make up an adequate sample. Each grab sample was washed through a standard No. 30 sieve ( $0.65-$ millimeter mesh size), and the benthic invertebrates (macrozoobenthos) retained by the screen were placed in a labeled container, preserved in 10 percent formalin, and taken to the laboratory for processing. Organisms were identified to the lowest practical taxonomic level (e.g., family, genus, or species) and the criteria for assigning individuals to each such taxon were unchanged throughout the study. Although grab sample volume varied, the number of organisms per replicate grab remained relatively constant indicating that most of the organisms were probably confined to the upper few centimeters of the substrate.

Macrozoobenthos communities at each station were compared before and after beach nourishment using Morisita's index of community similarity as modified by Horn (1966). This index provides a measure of the probability that individuals randomly drawn from each of the two communities will belong to the same species, relative to the probability of randomly selecting two individuals of the same species from one of the communities. Morisita's index values ( $C \lambda$ ) were calculated as follows:

$$
C \lambda=\frac{2 \sum_{i=1}^{s}\left(a_{i}\right)\left(b_{i}\right)}{A \cdot B\left(\frac{\sum_{i=1}^{s} a_{1}^{2}}{A^{2}}+\frac{\sum_{i=1}^{s} b_{i}^{2}}{B^{2}}\right)}
$$

where $A$ and $B$ are the total number of individuals in samples from communities 1 and 2 , respectively, and $a_{i}$ and $b_{i}$ are the number of individuals in each species present in samples from communities 1 and 2, respectively. $C \lambda$ varies from zero when the communities are completely distinct (containing no species in common) to unity when the communities are identical in proportional species composition.

In comparing the communities, the values of $C \lambda$ were considered to indicate the following: values below 0.500 indicated the communities were dissimilar; values from 0.500 through 0.749 indicated that the communities were similar; and values from 0.750 through 0.99 indicated that the communities were highly similar.

## 7. Fish.

Fish were sampled with a 46-meter-long, 2.4-meter-deep beach seine (0.6centimeter mesh, stretched measure) and 43-meter-long, 1.8-meter-deep graded mesh gillnets, each constructed of seven 6 -meter-long panels of gillnet mesh (one panel each of 2.5-, 3.8-, 5.1-, 6.3-, 7.6-, 10.1-, and 12.7-centimeter mesh, stretched measure) joined end-to-end. One seine haul was made at night at station 1 on transects $I$, IV, and VI during each sampling period. The seine haul was accomplished by anchoring one end of the net on the beach, setting the remainder of the net by boat in a semicircle extending from the beach out into the lake and back to the beach, and then pulling the entire net onto the beach. One gillnet was set overnight, perpendicular to the shoreline at stations 3 and 4 on transects I, IV, and VI. All fish collected in seines and gillnets were identified, weighed to the nearest gram, and measured to the nearest millimeter.

The fish sampling was designed to indicate the changes in the abundance of the major commercial, sport, and forage fish species throughout the study area that might have occurred as a result of the beach nourishment activities. Fish catch data were compared among transects.

## III. RESULTS

## 1. Beach Face Profile.

Aerial photographs of the shoreline in the vicinity of the Lexington Harbor (Figs. 3 to 5) show that the beach face profile changed markedly during the study. On 16 June 1980 the beach face in area A (accretion area) was located about 15 meters lakeward of the west end of the harbor's north breakwater (Fig. 3); the beach in this area, as measured to the tree line, was about 90 meters wide. In areas $B$ and $C$ the beach face was located within 15 meters of the tree line except at the north end of area $B$ where the maximum width of the beach was about 30 meters. Several groins, piers, and docks, some extending 15 meters or more into the lake beyond the beach face, were visible in areas $B$ and $C$.

On 3 December 1980, 2 months after nourishment the beach face in area A was located at the base of the harbor's north breakwater, about 30 meters landward of the position occupied on 16 June 1980 (Figs. 3 and 4). The beach face in areas $B$ and C (nourished beach) on 3 December 1980, however, was located about 15 to 45 meters lakeward of the position occupied on 16 June 1980, which resulted in the groins, piers, and docks being behind (landward of) the beach face (Fig. 4).

On 6 December 1981, 14 months after nourishment, the beach face in area $A$ was located at the west end of the harbor's north breakwater, about 30 meters lakeward of the position occupied on 16 June 1980 and about 45 meters lakeward of the position occupied on 3 December 1980 (Figs 3, 4, and 5). The width of the beach on 6 December 1981 , as measured to the tree line was about 120 meters. At the northern end of area $B$ the beach face was located about 15 meters lakeward of the position occupied on 3 December 1980, while at the southern end of area $B$ the beach face retreated landward about 7 meters. In some parts of area $C$ the beach face was located about 30 meters landward of the position occupied on 3 December 1980.
2. Substrate.

The 144 Ponar grab samples collected in June, July, and October 1980 and 1981, together with observations of the substrate (in situ) made from the vessel deck and with an underwater television camera, revealed that the substrate in the study area ranged from silty clay to large boulders (App. A). The substrate on all transects was generally cobble mixed with coarse sand and fine gravel at stations 1 and 2 , and was mostly cobble with isolated pockets of sand and fine sand at stations 3 and 4. The one exception occurred on transect III at stations 2 and 3 where inspection of the sediment samples, as they were removed from the grab, revealed the presence of pockets of silty clay on a predominantly cobble bottom. Boulders as large as 2.5 meters in diameter were distributed irregularly throughout the study area: A remotely operated underwater television camera was used to obtain permanent videotape records of the substrate at each station to describe the composition of the substrate components that were too large to sample effectively with the.-Ponar grab. However, sea conditions, low water clarity, and equipment failure prevented the completion of the required videotape recordings.

Grab sample size varied widely throughout the study reflecting mainly the effectiveness of the Ponar grab on the different substrates encountered. However, the samples obtained provided an adequate representation of the fine gravel-very fine sand component of the substrate in the areas sampled (App. A). The fine and medium sand fractions collectively accounted for 79 to 85 percent of the total (by weight) in each of the sampling periods during both years, the very fine sand fraction accounted for 11 to 14 percent, and coarse sand and fine gravel together accounted for 1 to 10 percent (Table 1). Friedman's test was used to determine if there were significant ( $P \leqq 0.05$ ) differences in particle-size distribution of the sand-gravel component of the substrate at station 1 in all six transects (Table 2) and at stations 1 to 4 combined among all six transects (Table 3) within each of the six sampling periods. No significant differences were found.

Table 1. Porcentage composition by weight of the fine gravel-very fine sand substrate fractions in Ponar grab samples.

sempling pertod	$\begin{gathered} \text { Pine } \\ \text { gravel } \\ \text { (8.0-2.0ram) } \end{gathered}$	$\begin{gathered} \text { Caarse } \\ \text { sand } \\ (2.0-0.5 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Madium } \\ \text { Eand } \\ (0.5-0.25 \mathrm{am}) \end{gathered}$	$\begin{gathered} \text { Fine } \\ \text { eand } \\ (0.25-0.125 \mathrm{mis}) \end{gathered}$	$\begin{gathered} \text { Very sine } \\ (0.125-0.062 \mathrm{man}) \end{gathered}$
1980					
9 June	1.8	4.0	29.7	53.4	11.1
21 July	4.9	4.7	25.0	53.7	11.7
14 October	1.9	3.2	20.0	63.5	11.4
1981					
10 June	2.7	3.3	21.6	61.8	10.6
14 July	0.4	0.9	18.8	66.6	13.3
8 October	0.8	1.7	17.6	65:8	14.1

Table 2. Results of Friedman's test comparing particle-size distribution among grab mamples taken at station 1 on transects I to VI.

$\begin{gathered} \text { Sampling } \\ \text { date } \end{gathered}$	$\begin{aligned} & \text { Degrees } \\ & \text { of } \\ & \text { freedon } \end{aligned}$	$\mathrm{X}^{2}$	```Minimum laval of Signilicance```
1980			
9 June	5	4.383	0.50
21 July	5	1.419	0.95
14 October	5	2.103	0.90
1981			
10 June	5	0.336	0.999
14 July	5	3.813	0.75
8 October	5	0.621	0.99

Table 3. Results of Friedman's teat comparing particle-size diatribution among grab eamples taken at stations 1 to 4 compined on tzanmects I to VI.

Sampling   date	Degrees   of   freedom	$x_{r}^{2}$	Minimum Ievel   of   Significance
1980	5	1.989	0.90
9 June	5	3.471	0.75
21 July	5	1.875	0.90
14 October	5	1.562	0.95
1981	5	3.813	0.75
14 June	5	4.497	0.50
8 october	5		

Water temperature was relatively constant throughout the study area within each sampling period in both years (App. B). Temperatures ranged from $10.0^{\circ}$ to $21.0^{\circ}$ Celsius in 1980 , and from $10.9^{\circ}$ to $23.8^{\circ}$ Celsius in 1981. In both years the highest temperature was recorded in July and the lowest in October. Generally the water temperature was slightly higher at stations 1 and 2 than at stations 3 and 4, and was also slightly higher at the surface than at the bottom. Dissolved oxygen (DO) remained at or near 100 percent saturation at all stations throughout the study (App. B). Concentrations of DO ranged from 9.4 to 13.2 milligrams per liter in July and June 1980, respectively, and from 8.4 to 12.9 milligrams per liter in July and June 1981, respectively. Throughout the study suspended particulate matter (SPM) was highest at station 1 and decreased with distance from shore; SPM ranged from 1.2 to 133.6 milligrams per liter in July 1980 and from 1.7 to 145.0 milligrams per liter in June and October 1981, respectively (App. B). At stations 3 and 4 SPM was usually higher at the bottom than at the surface. Throughout the study, turbidity was usually higher at stations 1 and 2 than at stations 3 and 4; turbidity ranged from 1.1 to 81.0 nelphalometric turbidity units (NTU) in July 1980 and from 0.6 to 70.5 NTU in June to October 1981, respectively (App. B).

Turbidity values were also similar on all transects within each sampling period. The single exception occurred on 21 July 1980, when turbidity values were low on transect I and high on transects II through VI (App. B). A similar situation is apparently documented in an aerial photograph of the harbor area taken on 23 July 1980 (Fig. 2).

## 4. Macrozoobenthos.

More than 29,600 organisms representing 40 taxa were identified from the 432 benthos samples taken throughout the study (Table 4; App. C). The most abundant organisms were Oligochaeta (worms) and Chironomidae (midge larvae) which made up 71 and 21 percent, respectively, of the total by number; 17 other taxa made up 2.0 to 0.1 percent of the total and the remaining 21 taxa contributed less than 0.1 percent each.

The densities of oligochaetes at all transects and for all sampling periods were usually lowest at station 1 and highest at either station 3 or 4 (Table 5). One major exception to this trend occurred at transect III, station 2,in October 1980 when the density of oligochaetes reached 10,137 per square meter, greatly exceeding that at stations 3 and 4 .

Densities in 1981 were often higher than in 1980 at many transects and stations, and the densities at transect $I$, station 4 , in October 1981 and transect III, station 3, in July and October 1981 were the highest measured during the study. The high density at transect $I$, a reference transect, is unexplained. The consistently high densities of oligochaetes at transect III in both 1980 and 1981 may reflect the presence of an eddy current just south of the harbor which appeared to cause silty clay to accumulate, thus providing a more suitable substrate than is available elsewhere throughout the study area for colonization by oligochaetes.

The densities of chironomids at all transects for all sampling periods were usually the lowest at station 1 (Table 6). Densities at stations 2 to 4,

Table 4. Taxonomic composition and relative abundance of macrozoobenthos collected by Ponar grab.

raxon	Pct Composition	Taxon Pct	Composition
Hydra	0.3	Polycentropus	0.3
Rhabdocoela	0.7	Leptoceridae	$<0.1$
Tricladida	0.1	Oecetis	0.1
Nematoda	0.7	Mystacides	<0.1
Hirudinea	0.1	Ceraclea	<0.1
Oligochaeta	71.3	Hydroptila	$<0.1$
Manayunkia speciosa	$<0.1$	Molanna	$<0.1$
Ostracoda	2.0	Cheumatopsyche	$<0.1$
Gammarus	0.3	Unjdentified Trichoptera	<0.1
Pontoporeia hoyi	0.5	Corixidae	0.4
Hyalella azteca	0.2	Plecoptera	$<0.1$
Argulus	<0.1	Acarina	0.5
Chironomidae	21.3	Ancylidae	$<0.1$
Ceratopogonidae	<0.1	Lymnaea	$<0.1$
Empididae	$<0.1$	Physa	$<0.1$
Tipulidae	$<0.1$	Gyraulus	<0.1
Caenis	0.6	Amnicola	0.1
Hexagenia	$<0.1$	Unidentified Gastropoda	$<0.1$
Stenonema	$<0.1$	Pisidium	0.4
Elmidae	$<0.1$	Unidentified Sphaeriidae	0.2

Table 5. Density of oligochaetes (average number per square meter).

Transect	Station	1980			1981		
		June	July	October	June	July	October
I	1	0	7	7	0	34	0
	2	14	510	152	7	131	41
	3	114	2,583	69	34	599	145
	4	1,205	937	2,920	5,916	592	18,174
II	1	0	48	7	0	7	14
	2	14	76	69	0	48	7
	3	875	276	820	0	544	96
	4	117	331	303	103	1,398	1,047
III	1	7	90	152	21	179	28
	2	117	496	10,137	262	1,577	2,707
	3	1,929	3,078	778	3,416	33,393	10,860
	4	331	331	282	303	1,846	792
IV	1	14	0	14	7	310	7
	2	179	482	200	62	90	21
	3	1,343	110	992	523	833	48
	4	131	1,054	186	277	5,061	771
$v$	1	0	0	28	14	138	- 0
	2	14	55	21	14	0	0
	3	138	468	517	14	117	69
	4	1,129	1,095	799	537	1,832	4,759
VI	1	34	14	7	0	117	0
	2	0	186	34	0	110	14
	3	220	172	647	193	392	48
	4	792	1,260	730	351	2,492	992

Table 6. Density of chironomids (average number per square meter).

Transect	Station	1980			1981		
		June	July	Octobar	June	July	October
I	1	7	69	0	21	90	14
	2	55	881	110	41	41	34
	3	196	523	14	337	117	76
	4	627	282	489	2,438	131	1,315
II	1	21	62	0	48	62	0
	2	55	399	145	207	269	227
	3	634	186	96	193	200	275
	4	324	344	48	110	365	227
III	1	14	110	21	55	158	7
	2	303	158	558	1,136	344	496
	3	613	2,679	200	1,522	1,054	503
	4	413	427	34	379	303	1,033
IV	1	90	103	21	131	138	62
	2	399	448	83	165	90	76
	3	2,472	179	262	337	282	165
	4	344	943	76	530	1,591	152
V	1	0	14	7	145	275	29
	2	131	110	55	41	90	14
	3	186	172	213	90	200	110
	4	200	344	152	358	393	386
VI	1	41	207	0	179	110	0
	2	145	69	7	48	110	55
	3	131	179	117	117	365	165
	4	1,853	296	124	854	613	379

however, varied considerably among transects and sampling periods without any pattern. The densities of chironomids generally averaged higher at stations 2 and 3 on transect III than elsewhere probably because of an accumulation of silty clay there which provided a more suitable substrate for colonization by chironomids. Generally the densities of chironomids in June and July were higher than in October at nearly all stations in both years.

Of the 38 other taxa represented in the samples, Ostracoda, Rhabdocoela, Nematoda, Caenis, Pontoporeia hoyi, Acarina, Corixidae, and Fisidium were found frequently; collectively, they made up 5.7 percent of the total macrozoobenthos (Table 4).

Index values ( $C \lambda$ ) obtained by applying Morisita's test of community similarity to the data (Table 7) indicate that the macrozoobenthos communities at station 1 in transects I to VI in 1980 differed in 9 of 18 comparisons from the communities present on these same stations in 1981. At stations 2 to 4 , however, the index values indicate that the macrozoobenthos communities in 1980 were either similar or very similar to those in 1981 in 51 of 54 comparisons.
5. Fish.

Almost 12,100 fish representing 31 species were caught in 36 gillnet sets and 18 beach seine hauls during the study (Table 8; Apps. D and E). Gizzard shad (Dorosoma cepedianum) were 52.7 percent of the combined total catch and spottail shiners (Notropis hudsonius), alewives (Alosa pseudoharengus), and troutperch (Percopsis omiscomaycus) were about 10 to 13 percent each of the total; four species contributed about 1 to 7 percent each and the remaining 23 species made up less than 1 percent each. With the exception of the gizzard shad which was taken in large numbers only in 1980, the species that dominated the catch in 1980 were also the most abundant ones taken in 1981. The list of species caught in 1981 differed little from that for 1980; only a few of the least abundant species were added to or lost from the list in 1981.

More fish were caught in both types of gear in 1980 than in 1981 (Table 8). The smaller gillnet catch in 1981 resulted almost entirely from a decrease in the catch at transects I and VI, the reference transects (Table 9). The smaller seine catch in 1981 was due to much lower catches in July and November 1981 than in the corresponding periods in 1980; these decreases in July and November offset the increase over 1980 levels that occurred in the catch in June 1981 on transects IV and VI. The low catch in July 1981 appears to have resulted from a general reduction in the abundance of almost all species (App. E), whereas the low catch in November 1981 reflects only a sharp reduction in the abundance of gizzard shad (Table 10).

## IV. DISCUSSION

## 1. Beach Face Profile.

Changes in the beach face profile that are evident in Figures 3, 4, and 5 reflect the Corps' beach nourishment activities in October 1980, which included the removal of beach sediment from area $A$, the deposition of that sediment in area $B$, and the deposition in area $C$ of sediment from a land borrow site; they also reflect the littoral drift of beach sediment during the period of study.

Table 7. Morisita's index values (CX) showing the degree of similarity of the macrozoobenthos community by station, between sampling periods. ${ }^{1}$

Transect	Station	$\begin{gathered} \text { June } 1980 \\ \text { vs } \\ \text { June } 1981 \end{gathered}$	$\begin{gathered} \text { July } 1980 \\ \text { vs } \\ \text { July } 1981 \end{gathered}$	```October 1980 vs October 1981```
I	1	0.444	0.799	0.000
	2	0.981	0.710	0.969
	3	0.901	0.978	0.919
	4	0.985	0.988	0.989
II	1	0.223	0.844	0.632
	2	0.838	0.996	0.895
	3	0.574	0.899	0.426
	4	0.892	0.795	0.994
III	1	0,728	0.973	0.948
	2	0.976	0.994	0.987
	3	0.990	0.733	0.966
	4	0.984	0.720	0.557
IV	1	0.956	0.290	0.228
	2	0.967	0.995	0.602
	3	0.960	0.768	0.511
	4	0.985	0.904	0.971
V	1	0.000	0.457	0.213
	2	0.823	0.843	0.463
	3	0.791	0.768	0.777
	4	0.804	0.988	0.990
VI	4	0.559	0.690	0.000
	2	0.871	0.903	0.411
	3	0.982	0.987	0.962
	4	0.964	0.988	0.961

1 Values of $c \lambda$ below 0.500 indicate communities are dissimilar, values of 0.500-0.749 indicate communities are similar, and values of 0.750-0.999 indicate communities are highly similar.
응
Table 8. Spt
Table 8. Species composition and relative abundance of fish.
Table 8. Spe

[^1]Acipenser fulvescens
aveu otytuuatios
$\frac{\text { Gillnet }}{1980 \quad 1981}$
$$
1,286
$$

Table 9. Gillnet catches for all species combined.

Transect	1980			$\begin{array}{r} \text { Total } \\ 1980 \end{array}$	1981			$\begin{array}{r} \text { Total } \\ 1981 \end{array}$
	June	July	Oct		June	July	Oct	
I	271	173	30	474	103	83	23	209
IV	231	96	31	358	277	43	15	335
VI	286	145	23	454	309	81	16	406
Total	788	414	84	1,286	689	207	54	950

Table 10. Beach seine catches for all species combined.

Transect	1980			$\begin{array}{r} \text { Total } \\ 1980 \end{array}$	1981			$\begin{array}{r} \text { Total } \\ 1981 \end{array}$
	June	July	Oct		June	July	Nov	
I	380	322	2,672 ${ }^{1}$	3,374	339	10	25	374
IV	322	402	$874^{2}$	1,598	422	$13^{\circ}$	17	452
VI	95	325	3,1663	3,586	416	40	20	476
Total	797	1,049	6,712	8,558	1,177	63	62	1,302

${ }^{1}$ Includes 2,656 gizzard shad.
2Includes 554 gizzard shad.
${ }^{3}$ Includes 3,136 gizzard shad.

The prevailing littoral currents and littoral drift of beach sediment throughout the study area are north to south (U.S. Army Engineer District, Detroit, 1980). This prevailing drift is reflected in the accretion of beach sediment on the north sides of groins and other shoreline structures, including the harbor's north breakwater, which interrupt the drift (Figs. 2 to 5). An exception to the prevailing north to south drift apparently occurs immediately south of the harbor, where the accretion of beach sediment on the south side of groins and similar structures suggests that an eddy current causes the prevailing drift to move from south to north along the shoreline in areas $B$ and $C$ (Figs. 2 to 5).

The beach face profile on 16 June 1980 represents the condition which existed before the Corps performed its beach nourishment activities. The accretion of beach sediment in area $A$ and the apparent erosion of beach sediment in areas B and C (Fig. 3) are consistent with the conclusion (U.S. Army Engineer District, Detroit, 1980) that the installation of the harbor contributed to erosion of the shoreline south of the harbor by interrupting the littoral drift of beach sediment.

The removal of about 19,000 cubic meters of beach sediment from area $A$, the deposition of that sediment in area $B$, and the deposition in area $C$ of about 35,000 cubic meters of sediment from a nearby land borrow site by the Corps in October 1980 caused changes in the beach face profile that are reflected in aerial photographs taken on 3 December 1980 (Fig. 4). Among the major changes that occurred were a retreat landward of the beach face in area $A$ and an advance lakeward of the beach face profile in areas B and C (Fig. 4) from the position occupied on 16 June 1980 (Fig. 3). These changes, caused by the nourishment activities, were relatively short-lived in area A, but were more persistent in areas B and C (Fig. 5). On 6 December 1981 (Fig. 5) the beach face in area A occupied a position lakeward of that observed on 16 June 1980 (Fig. 3) before the removal of beach sediment occurred there in October 1980. In areas B and C, the beach face on 6 December 1981 had retreated landward from the position occupied on 3 December 1980, but had not yet returned to that occupied on 16 June 1980. The minor lakeward extension of the beach face at the northern end of area B, which occurred between 3 December 1980 and 6 December 1981, is consistent with the hypothesis that an eddy current exists in areas $B$ and $C$.

## 2. Substrate.

The results of tests to determine if there was significant variation in particle-size distribution at station 1 among all six transects (the station most likely to be affected by beach nourishment) and for stations 1 to 4 combined among all six transects indicated that there were no significant ( $P \leqq$ 0.05 ) differences in distribution during any of the six sampling periods, either before or after the beach nourishment activities. These results indicate that the beach nourishment project did not alter the composition or the relative distribution of various particle sizes within the sediments in the nearshore area near Lexington Harbor.
3. Water Quality.

The water temperatures in both years were typical of the location and season and the DO concentrations never approached levels that could be
considered critical to the benthic fauna. Although the SPM and turbidity values obtained were generally high and varied widely between the nearshore and offshore stations, there was little variation between the surface and bottom at any given station, probably because of the wind-induced vertical mixing which occurred immediately prior to and during nearly all sampling periods.

Turbidity values for 21 July 1980 (App. B) and the turbidity plume visible in Figure 2 collectively suggest that the harbor breakwaters may increase turbidity in the vicinity of the harbor, by causing the resuspension of beach sediment, when littoral currents exceed some miminum velocity.
4. Macrozoobenthos.

The composition of the macrozoobenthos in the study area is similar to that recorded by Teter (1960), McKim (1962), and Schuytema and Powers (1966) in samples taken from the nearshore waters of Lake Huron.

The macrozoobenthos communities were compared before, immediately after, and 1 year after beach nourishment by using Morisita's index value of community similarity calculated for each station. The index values (Table 7) indicate that the macrozoobenthos communities at station 1 in 1980 differed in 9 of 18 comparisons from the communities present at station 1 in 1981. At stations 2 to 4 , however, the index values indicated that the macrozoobenthos communities in 1980 were similar or highly similar in 51 of 54 comparisons to the macrozoobenthos communities present in 1981. The dissimilarity among the benthos communities at station 1 occurred at the reference transects I and VI, as well as at transects II, III, IV, and V, which were with the area most likely to be affected by beach nourishment. Also the variability in density estimates for oligochaetes and chironomids at transect III, stations 2 and 3, is in part reflective of the highly variable substrate found here. It is concluded therefore that the beach nourishment activities were not responsible for this dissimilarity. A more likely explanation is that the unstable substrate at station 1 on all transects caused the macrozoobenthos to occur there in such low densities that the communities present were often dissimilar.
5. Fish.

Gillnet and seine catches made during the present study indicate that the fish community in the vicinity of the Lexington Harbor is typical of that in the nearshore waters of lower Lake Huron. Lists of species taken before and after beach nourishment activities were conducted differed little and the species that dominated the catch in 1980 were also the most abundant species in 1981. The major exception was the gizzard shad which was taken in very large numbers only in October 1980, immediately after beach nourishment was accomplished, and was virtually absent from the catch at other times. The sporadic appearance of large numbers of gizzard shad in the nearshore waters of the Great Lakes in the fall, (Edsall and Yocom, 1972; Caroots, 1976; Goodyear, 1978; Werner and Manny, 1979) appears typical of the species. Thus the large catch made in October 1980 is probably unrelated to the beach nourishment activities earlier in the month. The virtual absence of gizzard shad from the catches in November 1981 may reflect the tendency for the species to be more abundant in the nearshore waters in October than in November, as reported by Caroots (1976).

Although the total catch in 1980 was larger than in 1981, due mainly to the large catch of gizzard shad, there were also decreases from 1980 to 1981 in the catch of other species. However, a comparison of the catches of these other species on transect IV, which was located in the area most likely to be affected by the beach nourishment activity, with catches made on transects I and VI, the reference transects (Tables 9 and 10), revealed no adverse changes that could be attributed to the beach nourishment activities. Gillnet catches at transect IV in the nourishment area in July and October 1980 were smaller than in July and November 1981, and catches at transects $I$ and VI in the control areas also showed similar trends. The larger seine catch at transect IV in June 1981 than in June 1980 also indicates that the beach nourishment activity did not have an effect on the distribution of fish in the study area (Table 10). The seine catch was lower at transect IV in July and November 1981 than in July and October 1980, but similar declines were evident at transects I and VI. These results indicate that the beach nourishment activity had no adverse effect on the distribution and abundance of fish near the Lexington Harbor throughout the period of study.

## v. CONCLUSION

The results of this study indicate that the Corps' beach nourishment project conducted in October 1980 at the Lexington Harbor had no major adverse impact on substrate particle-size distribution, water quality, macrozoobenthos, or fish in the study area. Marked changes in the beach face profile occurred in the immediate vicinity of the harbor as a result of the nourishment activity; however, the only obvious change that persisted until the completion of this study about 14 months later was a moderate lakeward extension of the beach face in the area immediately south of the harbor.

BUCKHANAN, J.B., "Measurement of the Physical and Chemical EnvixonmentSediments," Methods for the Study of Marine Benthos. N.A. Holme and A.D. McIntyre, eds., IBP Handbook No. 16. 1971.

CAROOTS, M.S., "A Study of the Gizzard Shad, Dorosoma cepedianum (LeSueur), from Lake Erie near Cleveland, Ohio," unpublished M.S. Thesis, John Carroll University, Cleveland, Ohio, 1976.

COURTENAY, W.R., Jr., et al., "Ecological Monitoring of Beach Erosion Control Projects, Broward County, Florida, and Adjacent Areas," TM 41, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Feb. 1974.

CRONIN, L.E., GUNTER, G., and HOPKINS, S.H., "Effects of Engineering Activities on Coastal Ecology," Report to the Office of the Chief of Engineers, U.S. Army, Corps of Engineers, Washington, D.C., 1971.

CULTER, J.K., and MAHADEVAN, S., "Long-term Effects of Beach Nourishment on the Benthic Fauna of Panama City Beach, Florida," MR 82-2, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Jan. 1982.

EDSALL, T.A., and YOCOM, T.G. "Review of Recent Technical Information Concerning the Adverse Effects of Once-Through Cooling on Lake Michigan," U.S. Fish and Wildife Service, Great Lakes Fishery Laboratory, Ann Arbor, Mich., 1972.

GOODYEAR, C.D., "Evaluation of $316(\mathrm{~b})$ Demonstration: Detroit Edison's Monroe Power Plant," U.S. Fish and Wildife Service, Great Lakes Fishery Laboratory, Ann Arbor, Mich., 1978.

HORN, H.S., "Measurement of Overlap in Comparative Ecological Studies," American Naturalist, Vol. 100, 1966, pp. 419-424.

MARSH, G.A., et al., "Environmental Assessment of Nearshore Borrow Areas in Broward County, Florida," Final Report, Joint FAU-FIU Center for Environmental and Urban Problems, Fort Lauderdale, Fla., 1978.

MARSH, G.A., et al., "Ecological Evaluation of a Beach Nourishment Project at Hallandale (Broward County), Florida," Vol. II, Evaluation of Benthic Communities Adjacent to a Restored Beach, Hallandale (Broward County), Florida, MR 80-1 (II), U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Mar. 1980.

MCKIM, J.M., "The Inshore Benthos of Michigan Waters of Southwestern Lake Huron," M.S. Thesis, School of Natural Resources, University of Michigan, Ann Arbor, Mich., 1962.

PARR, T., DIENER, D., and LACY, S., "Effects of Beach Replenishment on the Nearshore Sand Fauna at Imperial Beach, California," MR 78-4, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Dec. 1978.

SCHUYTEMA, G.S., and POWERS, R.E., "The Distribution of Benthic Fauna in Lake Huron," Publication No. 15, Great Lakes Research Division, University of Michigan, Ann Arbor, Mich., 1966, pp. 155-163.

TETER, H.E., "The Bottom Fauna of Lake Huron," Transactions of the American Fishery Society, Vol. 89, No. 2, 1960, pp. 193-197.
U.S. ARMY ENGINEER DISTRICT, DETROIT, "Expanded Reconnaissance Report on Shore Damage at Lexington Harbor, Michigan." Detroit, Mich., Apr. 1980.

WERNER, M.T., and MANNY, B.A., "Fish Distribution and Limnological Conditions Under Ice Cover in Anchor Bay, Lake St. Clair, 1979," Administrative Report No. 80-1, U.S. Fish and Wildlife Service, Great Lakes Fishery Laboratory, Ann Arbor, Mich., 1979.

ZAR, J.H., Biostatistical Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974.

## APPENDIX A

PARTICLE-SIZE DISTRIBUTION DATA

DATE	TRANSECT	STAATION	FRACTION HEIGHT (G) BY U.S. STANDARD SIEVE SERIES NO.				
			10	35	60	120	230
6/9/80	I	1	7.7	29.0	264.2	663.8	14.9
		2	1.2	0.6	8.2	288:9	50.2
		3	2.7	2.6	6.2	216.0	121.1
		4	72.3	54.6	40.2	225.5	264.4
	11	1	1.6	12.5	393.6	462.9	3.5
		2	4.9	1.0	13.3	275.3	59.8
		3	0.2	2.5	36.1	408.9	. 194.4
		4	0.1	3.1	30.5	109.5	13.3
	III	1	1.8	3.6	357.1	98.2	0.8
		2	12.7	. 21.0	135.4	422.0	40.7
		3	0.1	0.7	3.4	373.5	126.8
		4	23.0	22.3	115.2	197.4	$118.1$
	IV	1	12.0	26.0	658.0	583.9	14.6
		2	2.1	7.9	14.7	347.2	93.5
		3	1.8	19.5	38.4	354.8	161.1
		4	11.5	83.2	497.3	363.3	17.3
	$V$	1	1.4	2.1	184.9	447.1	8.6
		2	1.5	28.7	430.3	915.3	54.2
		3	0.7	23.3	164.4	443.8	71.2
		4	0.8	4.7	43.2	346.1	136.2
	VI		0.2	1.3	5.9	108.0	3.9
		2	0.1	1.8	28.5	468.3	39.6
		3	87.5	185.9	969.5	181.0	23.2
		4	24.5	139.0	453.0	146.0	24.4
7/21/80	1	1	430.9	160.2	188.4	142.6	1.9
		2	24.6	29.3	12.4	23.2	4.6
		3	0.1	1.0	5.7	437.2	240.0
		4	2.4	58.0	111.4	59.9	81.9
	11	1	7.2	9.6	195.0	525.3	31.4
		2	0.1	1.2	30.0	490.4	80.0
		3	0.3	6.3	86.5	1112.0	146.8
		4	1.3	7.8	73.6	246.3	59.4
	III	1	1.1	32.3	838.2	69.4	3.9
		2	0.9	6.5	135.1	388.2	44.9
		3	4.5	19.2	41.6	258.6	50.2
		4	24.6	152.4	419.8	284.5	35.9
-	IV	1	93.4	14.5	664.7		6.0
		2	0.3	6.5	82.1	830.5	181.0
		3	1.4	15.1	69.4	420.7	154.1
		4	49.4.	44.8	72.9	23.9	9.4
	-V	1	0.7	8.7	407.3	845.2	30.9
		2	1.8	37.2	183.1	783.7	58.3
		3	3.5	9.8	64.1	667.7	115.4
		4	1.0	10.8	102.4	624.4	156.3
	V I	1	21.6	56.0	417.5	553.3	4.7
		2	0.0	0.7	21.7	172.7	28.0
		3	1.5	7.3	95.4	555.8	161.6
		4	3.6	23.8	132.2	274.5	345.1

PRACTICN WEIEUT (G) BY U.S. STAROAPD SIEVE

SERIES NO.

DRTE	TEANSECT	STAT 10\%	10	35	60	120	230
10/14/80	1	1	63.9	16.9	198.0	286.5	12.7
		2	0.0	0.6	36.3	444.0	49.3
		3	17.0	16.3	34.0	364.8	61.7
			21.9	164.4	139.1	$31 \%$ 8	234.5
	11	1	1.5	11.3	625.1	287.7	6.6
		2	13.3	4.7	18.3	634.9	104.4
		3	0.3	24.0	136.2	459.0	95.9
			4.4	28.6	370.8	482.6	43.2
	111	1	4.6	12.6	225.2	503.8	12.3
		2	1.0	13.2	107.1	232.1	27.8
		3	0.8	5.8	22.1	820.5	108.7
		4	$129.1$		$248.6$	$85.9$	$6.1$
	IV	1	0.1	2.3	33.2	107.1	4.0
		2	0.0	1.0	73.6	619.8	69.1
		3	0.2	1.7	6.2	271.3	142.1
		4	16.0	28.7	22.8	181.0	
	$v$	1	0.9	11.9	195.7	627.1	34.0
		2	0.4	7.0	49.8	598.7	78.1
		3	0.0	4.7	85.0	127.2	26.3
		4	2.0	7.0	69.0	146.3	16.4
	V 1	1	0.1	0.8	27.7	176.3	11.5
		2	0.1	1.1	75.5	464.6	23.9
		3	3.9	22.0	147.2	384.1	173.5
		4	3.3	8.5	97.9	182.8	11.?
6/10/81	1	1	0.1	0.8	47.9	234.2	6.3
		2	0.0	0.2	26.7	485.5	35.2
		$3$	0.1	0.1	1.2	20.2	3.0
		4	2.8	8.5	47.3	119.6	28.5
	11	1	47.0	59.7	298.3	422.0	16.0
		2	3.1	2.0	12.2	29.0 .8	57.8
		3	0.0	0.4	7.9	269.6	5\%. 2
		4	0.0	0.1	0.5	2.6	2.1
	111	1	0.2	3.3	485.7	699.0	4.3
		2	0.0	0.1	0.8	26.8	2.4
		3	1.6	5.3	21.6	246.2	147.6
		4	0.0	0.1	0.6	122.5	72.3
	IV	1	1.9	4.1	422.7	342.9	4.9
		2	6.0	40.4	81.8	368.3	131.7
		3	0.2	5.0	18.2	198.6	181.1
		4	0.1	0.9	3.3	50.0	55.2
	V	1	2.9	11.7	328.9	451.7	37.11
		2	0.0	1.3	198.9	652.6	14.4
		3	0.1	3.5	44.5	652.3	87.3
		4	1.1	11.3	49.2	285.1	182.4
	V I	1					
		2	0.1	2.1	45.8	617.2	43.3
		3	0.1	1.0	24.6	385.2	67.7
		4	0.3	11.0	247.8	230.0	66.2


DATE	TRANSECT	STATIOM	10	35	60	120	230
7/14/81	I	1	0.1	0.4	17.9	804. 1	23.2
		2	0.1	0.6	34.0	744.1	69.0
		3	0.1	7.2	665.9	20.5	80.6
		4	0.4	2.1	16.0	435.6	133.8
	II	1	4.2	5.6	60.3	401.0	$1 \% .8$
		2	0.1	2.0	48.1	705.8	63.0
		3	0.1	0.3	1.4	196.8	136.0
				27.5	181.8	234.2	65.6
	III	1	0.4	7.0	519.2	168.4	2.0
		2	0.9	3.5	27.6	594.2	138.1
		3	0.2	2.6	56.8	436.5	186.7
		4			24.2	626.4	83.0
	IV	1	0.3	8.2	324.6	197.7	72.7
		2	13.8	19.6	227.8	770.6	16.4
		3	12.6	19.6	129.8	489.8	81.2
		$4$	$0.9$	6.2	$8.3$	295.6	384.9
	V	1	0.3	3.2	100.8	226.9	95.3
		2	0.1	1.5	67.3	683.1	17.4
		3	0.1	0.6	6.2	121.4	14.4
		$4$	3.6	8.3	52.2	308.3	155.2
	V I	1	5.5	5.3	? 1.5	101.3	5.0
		2	1.0	3.4	272.0	834.7	13.9
		3	0.5	1.3	11.5	427.6	103.8
		4	3.5	7.2	26.5	82.3	74.4
$10 / 8 / 81$	I	1	1.5	3.9	90.1	403.7	10.7
		2	0.0	1.0	12.8	533.8	133.2
		3	7.0	3.0	6.4	381.6	97.7
		4	19.3	78.3	90.9	167.5	235.6
	I 1	1	26.5	34.5	176.1	539.0	13.9
		2	0.8	1.6	71.3	829.2	42.1
		$3$	0.1	0.3	1.2	182.5	187.3
		4	12.5	26.3	336.9	524.3	83.1
	I I 1	1	7.2	11.5	499.5	458.5	13.9
		2	0.1	0.8	31.8	511.2	87.9
		$3$	2.4	6.7	42.3	147.0	100.2
		4	3.5	10.7	21.9	210.2	121.4
	IV	1	31.0	27.0	542.2	367.8	3.5
		2	1.1	4.3	20.9	281.6	54.0
		3	0.3	2.6	31.2	224.5	73.5
		4	0.0	0.4	3.5	264.4	386.8
	V	1	0.1	2.0	54.0	195.8	22.8
		2	0.2	3.8	132.0	1131.2	58.9
		3	0.1	4.5	46.5	680.9	76.9
		4	1.6	7.4	36.9	284.9	184.6
	V 1	1	3.4	7.0	218.7	661.0	8.0
		2	0.1	1.1	130.2	808.2	27.7
		3	0.2	4.3	35.1	904.9	138.4
		4	2.2	17.5	142.0	74.9	12.2

## APPENDIX B

WATER QUALITY DATA

			$\begin{gathered} \text { DISSOLVED } \\ \text { OXYGEN } \\ (P P M) \end{gathered}$						$\begin{aligned} & \text { TuFBioITY } \\ & \text { loru's) } \end{aligned}$	
DAIE	transect	Station	SURACE							
6／12／80	1	1	12.2	$0 \times 6 \times 1 /$	14.5	＊＊＊＊	7.80	＊＊＊＊的	7.1	（3） 40
		2	12.5	12.8	13.0	12.5	6.50	5.70	2.3	3.1
		3	12.4	17.6	11.0	11.0	4.00	4.30	2.9	2.0
		4	12.3	12.6	11.0	11.0	3.40	2.60	1.8	1.4
	II	1	12.8	＊＊＊＊＊	14.0	＊$\times$ ：$\%$	8.20	＊＊く4＊＊	7.4	＊＊＊＊
		2	12.6	1？．f1	12.0	12.0	4.80	4.40	2.2	2.2
		3	12.6	12.7	11.5	11.5	3.30	3.90	2.2	2.0
		4	12.3	12.4	11.2	11.0	3.30	2.90	1.7	1.4
	111	1	13.0	＊＊0\％	13.0	4n＊＊	6.40	＊＊＊＊＊＊	5.3 ．	
		2	12.7	12.7	12.0	12.0	4.00	3.20	1.9	1.4
		3	12.4	12.7	11.6	11.2	4.50	3.90	2.8	2.1
		4	12.4	17.5	11.2	11.0	2.80	2.20	1.2	1.8
	IV	1	13.2	\＃＊＊＊	13.2	＊＊＊＊	9.90	＊＊＊＊＊＊	5.2	\＃$\square_{\text {a }}$
		2	12.6	12.7	11.8	11.9	3.30	2.50	1.6	1.6
		3	12.5	12.5	11.2	11.2	2.50	2.70	1.7	1.7
		4	12.4	12.5	11.1	11.0	2.80	3.30	1.8	1.6
	v	1	12.6	＊＊＊＊	13.5	＊4＊＊	11.30	＊＊＊＊が	6.7	74．4＊
		2	12.6	12.7	12.3	12.2	4.20	4.60	2.2	2.5
		3	12.4	12.4	11.8	11.9	4.00	3.80	1.8	1.9
		4	12.3	12.4	11.3	11.2	4.10	3.60	1.9	2.2
	VI	1	12.2	＊＊＊＊	13.8	やめ＊＊	7.00	＊＊＊＊＊＊	6.9	＊＊＊＊
		2	12.6	12.6	12.1	12.1	4.40	5.60	2.8	2.3
		3	12.4	12.4	11.9	11.8	4.00	3.50	2.3	2.3
		4	12.3	12.4	11.7	11.6	2.80	3.80	2.2	2.2
7／21／80	1	1	9.9	＊＊＊＊	18.8	＊＊＊＊	4.80	＊＊＊＊＊＊＊	1.8	＊＊＊＊
		2	10.4	11.7	19.2	17.5	1.25	1.30	1.1	1.1
		3	10.5	10.6	15.3	15.0	1.60	4.40	1.2	1.8
		4	10.9	10.9	16.8	16.2	2.10	2.60	1.4	1.4
	II				19.2				54.5	＊＊＊＊
		2	10.0	9.8	18.2	18.2	26.40	25.50	17.5	18.0
		3	10.5	10.4	17.4	16.9	4.40	5.20	2.1	1.9
		4	10.7	10.6	16.2	16.2	3.00	4.10	1.6	1.4
	III	1	9.7	＊＊＊＊	18.8	＊＊＊＊	24.80	＊がき\＃\＃	20.0	＊＊＊
		2	9.6	9.6	18.2	17.6	13.60	13.60	12.0	11.5
		3	10.1	9.9	16.8	16.6	3.20	15.80	5.5	8.4
		4	10.2	10.1	17.0	15.9	7.90	3.70	4.8	1.4
	IV	1	10.2	＊＊＊＊	19．？	＊＊＊＊	29.00	＊＊＊＊＊＊	13.3	＊＊＊＊
		2	9.9	9.9	18.0	17.8	8.80	8.40	6.0	4.7
		3	9.9	9.6	17.2	17.0	9.20	11.00	5.7	4.9
		4	10.1	9.8	17.2	16.8	4.40	4.70	1.9	2.2
	$v$	1	9.4	＊＊＊＊	20.0	＊＊＊＊	133.60	＊＊＊\＃＊＊	81.0	＊4＊＊
		2	9.9	9.9	18.2	18.1	13.20	11.50	6.8	6.3
		3	10.0	9.9	17.1	17.1	2.90	8.30	1.9	2.4
		4	10.2	10.0	16.7	16.7	3.00	2.90	1.4	1.6
	v I	1	9.4	＊＊4＊	21.0	＊＊＊＊	42.50		19.3	＊ $4 \times 4$
		2	9.14	9.4	20.0	17.5	17.20	20.00	18.8	21.5
		3	9.8	9.8	19.0	18.9	16.00	8.80	5.6	5.4
		4	9.6	9.8	19.2	18.0	2.90	4.40	1.3	1.2

1／＊Indicates that ro simple was tahem．

UATE	TRANSFCT	STATION	$\begin{gathered} \text { DISSOLVCO } \\ \text { OXYGEN } \\ \text { (PFM } \end{gathered}$		TEMPERATURE （C）		SUSPERAOED particulate MATIER （MG／L）		$\begin{aligned} & \text { TURERIUITY } \\ & \text { (1:TU'S) } \end{aligned}$	
			SUPFACF：	戶SYTOM	SURTACE	GUitom	SUP：ACE	nottom	SUPFACE	SCTTCN
10／20／60	I	1	12.0		10.0		1.90	4 4 \％ 4 \％${ }^{\text {a }}$	9.7	＊＋¢
		2	11.0	10．\％	10.0	10.0	6.30	10.80	1.8	2.8
		3	11.0	10.8	11.0	10.0	6.80	12.00	1.4	2.4
		4	10.8	10.8	11.0	11.0	6.00	13.00	1.4	2.3
	II	1	11.0	4＊＊＊	10.0	$x+6 *$	10.00		6.2	＊＊＊＊
		2	11.1	11.0	10.0	10.0	11.60	26.80	3.9	4.6
		3	11.0	1）．0	10.5	10.0	7.80	8.80	4.0	4.0
		4	11.0	11.1	10.5	10.0	11.00	32.60	4.1	6.0
	111	1	11.0		10.0	6tu\％	8.20	4＊动为車	5.1	4＊＊＊
		2	11.0	11.0	10.7	10.2	9.00	31.00	6.5	6.5
		3	10.9	11.0	10.5	10.0	10.40	11.40	3.9	5.8
		4	10.9	11.0	10.6	10.5	5.70	8.40	3.0	3.2
	IV	1	10.9	$x * 4 *$	10.2	－cosut	8.70	＊＊\％\％\％	6.7	＊$\%$＊
		2	11.0	11.0	10.2	10.1	8.80	11.20	5.0	6.0
		3	10.9	11.0	10.2	10.2	14.40	12.20	5.5	5.6
		4	10.8	11.0	10.5	10.2	8.60	9.60	3.4	4.1
	$v$	1	10.8		10.5	＊）＊＊＊	10.40		6.6	－A \％ 4
		2	11.1	11.0	10.0	10.0	12.20	25.40	8.0	10.9
		3	11.0	11.0	10.0	10.0	13.00	17.00	7.1	8.4
		4	10.9	10.8	10.7	10.5	6.80	8.20	2.5	2.8
	V1	1	10.9	＊＊＊＊＊	10.5	＊4＊＊	9.20	＊＊＊＊＊＊	5.3	＊＊＊＊
		2	11.0	10.9	10.5	10.5	10.00	10.40	3.6	6.2
		3	11.0	11.0	10.1	10.1	6.09	10.00	3.9	4.0
		4	10.8	10.8	10.8	10.6	18.40	7.80	2.5	3.7
6／15／81	1	1	12.3	＊＊ 4 ＊	13.3	4＊＊＊	11.40		3.2	
		2	12.8	12.8	12.5	12.2	2.60	2.60	1.0	1.0
		3	12.9	12.7	11.2	11.2	2.70	3.10	0.8	0.9
		4	12.6	12.7	11.2	10.5	3.00	2.70	0.6	0.8
	II	1	12.7	＊＊＊＊	13.8	4＊＊＊	6.60		1.7	＊＊＊＊
		2	12.2	12.2	13.0	13.0	2.90	4.10	1.1	0.9
		3	12.0	12.2	13.0	12．9．	3.10	4.40	0.8	1.2
		4	11.9	12.0	12.7	12.6	1.70	2.90	0.8	0.8
	III	1	12.2	＊＊＊＊	14.3	＊＊＊＊	5.00	＊＊＊＊＊＊	1.2	＋${ }^{+5}$
		2	11.8	12.1	13.3	13.3	6.00	6.70	1.6	1.6
		3	11.9	12.2	13.0	12.8	4.10	6.40	1.2	1.1
		4	11.9	11.9	13.0	13.0	2.00	11.70	0.8	2.7
	IV	1	12.0		15.0	＊＊＊＊	10.90	妾女かもあ	3.0	＊ 4 \＃${ }^{\text {a }}$
		2	11.6	11.8	13.0	13.0	3.30	4.70	1.0	1.1
		3	11.8	12.0	12.8	12.8	3.90	3.70	1.0	0.8
		4	11.8	12.1	12.8	12.8	4.30	4.10	0.8	0.9
	$V$		12.1		14.9	4 ¢ 4 亲	6.30	＊＊＊＊＊＊	1.5	＊＊＊＊
		2	11.7	11.8	13.2	13.3	3.70	4.10	0.8	1.2
		3	11.7	11.9	13.1	13.1	3.90	4.60	0.7	1.2
		4	11.8	12.0	12.8	12.8	3.00	4.10	0.9	1.0
	V1	1	11.3		16.3	＊$*$＊＊	12.90	＊4＊＊ 4 \＃	3.6	＊＊＊＊
		2	11.6	11.6	14.7	14.8	5.10	6.00	1.1	1.4
		3	11.5	11.7	14.0	14.0	1.70	4.10	1.0	1.1
		4	11.5	11.9	13.8	13.7	4.40	4.10	1.0	1.1


UATE	TRANS C．CT	S1MTJON	$\begin{gathered} \text { BISSOLVEU } \\ \text { OXYGEN } \\ \text { (SPH) } \end{gathered}$		TEMCERATURE （C）		SUSPEPIDED PAPIICULATE MAlTi：R （riG／L）		$\begin{aligned} & \text { Tupiblofty } \\ & \text { (?viu's) } \end{aligned}$	
			SUnFACE	BOY104，	SUMFACE	ELTTOH	SURFACE	BOT1 cm	SURFFCE	E！IT TOM
7／15／82	1	1	10.8	ちれいい	22.3	あれが号	44.90	＊¢ \％＊＊ 4	7.5	6＊
		2	10.9	10.7	22.0	21.3	32.00	34.70	3.1	5.5
		3	10.8	8.4	22.0	21.3	31.10	33.40	1.6	4.0
		4	11.2	S． 8	22.0	21.3	30.10	35.10	1.4	4.4
	11	1	11.2		22.8	＊¢ \＃\％	43.40		4.2	\％が菫
		2	11.3	10.8	21.9	21.9	30.40	34.60	1.9	2.6
		3	11.6	10.9	22.0	21.5	31.10	33.00	1.2	2.0
		4	11.4	11.3	21．9	21.2	28.70	38.70	1.1	3.7
	111	1	10.6		23.8	W\％¢ ¢ \％	52.20		8.3	4れあす
		2	11：2	11.8	22.2	21.5	33.90	32.40	5.7	5.3
		3	10.6	10.7	22.0	21.2	34.40	56.00	3.6	10.2
		4	11.4	11.4	21.9	21.2	32.40	54.20	1.1	4.2
	IV	1	11.0		23.0	ありが为	49.60		5.8	＊もちゃ
		2	10.9	11.3	22.1	21.9	28.40	46.80	1.7	1.9
		3	11.1	11.2	22.0	21.5	27.60	50.40	1.5	1.8
		4	11.3	11.4	21.9	21.1	32.30	46.80	1.2	2.7
	$v$	1	11.6	＊＊＊＊	22.8	それが	63.80		14.0	＊＊＊＊
		2	11.2	11.5	22.0	22.0	31.00	42.20	1.3	2.4
		3	11.2	11.4	22.0	21.9	31.30	40.40	1.4	1.9
		4	11.3	11.4	21.9	21.2	28.10	48.20	0.9	4.2
	V 1	1	11.4	¢ \％\＃＊	23.0		51.20	＊＊办为为	2.3	＊＊＊
		2	11.4	11.6	22.2	22.0	28.30	48.00	2.4	3.1
		3	11.2	11.4	22.0	22.0	33.90	43.80	2.1	2.5
		4	11.2	11.8	21.8	2i． 0	31.30	30.00	1.4	2.5
$10 / 8 / 81$	1	1	10.5	＊） 10 \％	11.4	＊＊＊ 4	129.20	＊本女为为	56.5	t + ¢ ${ }_{\text {c }}$
		2	10.6	10.4	11.4	11.5	47.60	53.20	27.5	29.5
		3	10.2	10.2	11.5	11.5	12.09	20.00	8.6	11.7
		4	10.2	10.4	11.5	11.5	16.30	16.30	3.7	9.0
	II	1	11.0	4＊t＊	11.2		55.70	4＊＊＊＊＊＊	31.0	
		2	10.2	10.4	11.5	11.5	28.30	23.70	15.7	13.9
		3	10.1	10.4	11.9	11.5	19.30	43.30	14.7	21.7
		4	9.8	10.4	11.9	11.1	145.00	42.70	10.3	21.7
	III	1	10.5	4＊＊爯	11.0	4＊中	39.30		22.5	＊示为
		2	10.1	10.3	11.0	10.9	35.00	35.00	24.5	23.0
		3	9.7	9.8	10.9	10．9	26.30	．63．70	17.5	35.0
		4	9.6	9.6	11.5	11.5	21.00	17.00	11.8	11.4
	IV	1	10.5	＊いが	11.2	＊ 4 为	81.30	＊＊＊＊${ }^{\text {＋}}$（	40.5	＊ 4 ＊
		2	9.7	9.8	11．2	11.2	45.00	56.00	24.0	27.5
		3	9.9	10.1	11.5	11.5	32.00	17.30	16.9	16.2
		4	9.8	10.2	12.0	11.5	16.70	28.00	10.5	17.7
	－V	1	10.6	＊ 4.4	11.5	4＊＊＊＊	95.30		50.0	＊$* * *$
		2	10.0	10.0	11.5	11.5	42.70	$3 \% .00$	25.0	17.7
		3	10.3	10.5	11.5	11.5	35.00	95.30	17.7	40.5
		4	10.0	10.3	12.0	11.5	15.00	35.00	11.4	21.5
	VI	1	10.6	＊ $4 * *$	11.5	＊＊＊＊	95.70		70.5	＊ 4 ＊${ }^{\text {\％}}$
		2	10.0	10.2	11.5	11.2	23.30	48.30	20.2	23.4
		3	10.0	10.4	11.5	11.5	21.30	117.30	13.9	51.0
		4	9.9	10.3	11.5	11.5	10.70	20.00	8.2	15.6

APPENDIX C

MACROZOOBENTHOS DATA




- oiv Mven

GRAG CCJNTS MEAN i:C.



M-9 -



## APPENDIX D

FISH DATA (GILLNET)

CATE	TRANSECT	STATION	SPECIES	TOTAL No.	$\begin{gathered} \text { IOTAL } \\ \text { WEIC,HT } \\ (\sigma,) \end{gathered}$	LETIGTM RATIGE (MIA)
-110/80	1	3	ALEJIFE	30	1225,	11,2-20
			SUREOT	1	1300	512
			TKOUT PERCH	21	245	108-122
			lake tiout	1	4050	705
			WHITE SUCKER	6	3690	300-488
			SPOTIAIL SHIMER	47	550	100-127
			YELLDW PERCH	5	1140	203-324
		4	4L EXIFE	94	3730	146-208
			Ralnbuid shelt	1	12	187
			TROUT PERCH	14	145	106-125
			CHINOOR SALMOM	,	500	388
			lake trout	1	2650	652
			WHIITE SUCKER	1	900	446
			SPOTIAIL SHINER	36	375	102-129
			YELLOW PERCH	12	1613	158-344
	IV	3	AL EWIFE	71	2762	153-195
			TROUT PERCH	19	250	106-125
			Lake trout	3	5950	603-885
			WHITE SUCKER	3	1700	275-448
			SPPOTAAL SHINER	40	455	100-123
			halleye	6	3075	345-392
		4	ALEWIFE	22	95\%	160-227
			RAINBOW SMELT	2	25	135-156
			TRJUT PEXCH	28	310	101-127
			SPOTTALL SHINER	30	365	101-127
			YELLOW PERCH	6	450	146-230
			WALLEYE	1	1250	497
	VI	3	ALEUIFE	48	2317	162-218
			TROUT PERCH	47	667	106-142
			WHITE SUCKER	1	1150	471
			SPOTTAIL SHINER	124	1560	102-125
			YEILOA PERCH	1	72	197
			WALLEYE	4	1700	324-376
		4	Lake sturgeoh	1	600	468
			ALEHIFE	24	1114	155-205
			RAINBCH SIMELT	1	28	166
			TRDUT PERCH	12	148	100-128
			WHITE SUCKER	1	1050	460
			SPDTTAIL SHINER	19	263	103-126
			YELLOW PERCH	1	600	343
			WALLEYE	2	1525	405-426
7/23/80	I	3	AL EHIFE	102	3358	113-205
			trout perch	15	190	107-127
			Y:HITE SUCKER	2	1530	377-482
			SPOITAIL SHINER	4	158	108-119
			YELLOW PERCH	3	549	228-267
			WALLEYE	1	920	493
		4	ALEWIFE	21	925	153-195
			TROUT PERCH	2	30	113-122
			WHITE SUCKER	2	770	266-382
			SPOTTAIL SHINER	4	60	111-118
			YELLDW PERCH	9	1946	143-357
			halleye	1	586	401
	IV	3	ALEHIFE	33	1125	154-191
			CHANNEL CATFISH	1	280	320
			TRDUT PERCH	7	80	111-124.
			SPPGTTALL SHIHER	3	40	10t-121
			Yelloin perch	6	585	155-246
			WALLEYE	2	780	363-372
		4	ALEWIFE	24	770	151-182
			SPOTIAIL SHINER	2	30	120-128
			YELLOW PERCH	15	1508	142-230
			WALLEVE	3	1376	329-437
	VI	3	ALEWIFE	59	2140	146-197
			black bullhead	1	90	170
			Chatamel Catfish	1	330	333
			CROUN TROUT	1	5300	713
			WHITE SUCKER	3	1135	230-361
			SPGTTAIL SHINER	5	50	107-118
			YELLOW PERCH	8	825	166-234
			halleye	8	7570	355-572
		4	ALEWIFE	30	1005	149-190
			TROUT PERCH	3	45	107-122
			WHITE SUCKER	1	880	426
			SPOYTAIL SHINER	4	60	114-127
			YELLOH PERCH	20	3233	102-373
			WALLEYE	1	390	353


[ATE	TRAOSTCT	STATION	SPECIES	TOTAL NU.	$\begin{gathered} \text { TOTAL } \\ \text { WITIOHT } \\ \text { (i, }) \end{gathered}$	$\begin{aligned} & \text { LENGRH } \\ & \text { PABSE } \\ & \text { (SN) } \end{aligned}$
10/29/60	1	3.	$\begin{aligned} & \text { LFKE IROUT } \\ & \text { SPOTIAIL SHINFP. } \end{aligned}$	$\begin{array}{r} 15 \\ 4 \end{array}$	$\begin{array}{r} 43200 \\ 50 \end{array}$	$\begin{aligned} & 582-735 \\ & 110-125 \end{aligned}$
		4	$\begin{aligned} & \text { LAKI: TROUT } \\ & \text { WHIT SUCKER } \\ & \text { SPOTIAIL SHINER } \\ & \text { YCII.OW PERCH } \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 1 \\ & 3 \end{aligned}$	$\begin{array}{r} 12675 \\ 1740 \\ 10 \\ 670 \end{array}$	$\begin{gathered} 650-725 \\ 281-420 \\ 102 \\ 192-315 \end{gathered}$
	IV	3	LAKE TROUT SPOTTAIL SHINER	$\begin{array}{r} 13 \\ 5 \end{array}$	$\begin{array}{r} 41700 \\ 60 \end{array}$	$\begin{aligned} & 595-755 \\ & 104-115 \end{aligned}$
		4	L $4<$ R TROUT SPITTAIL SHINER	$\begin{array}{r} 11 \\ 2 \end{array}$	$\begin{array}{r} 284.00 \\ 25 \end{array}$	$\begin{aligned} & 548-710 \\ & 112-118 \end{aligned}$
	$V I$	3	LAKE TPROUT SPOITAIL SHINER	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 3800 \\ 30 \end{array}$	$\begin{gathered} 750 \\ 108-113 \end{gathered}$
		4	LAKE TROUT   WMITE SUCKER   SP'JTTAIL SHINER   YELLOW PERCH	$\begin{array}{r} 1 \\ 1 \\ 15 \\ 3 \end{array}$	$\begin{array}{r} 3300 \\ 160 \\ 178 \\ 268 \end{array}$	$\begin{gathered} 690 \\ 250 \\ 102-120 \\ 182-202 \end{gathered}$
6/10/81	1	3	ALEWIFE   RAINBOW SMELT   TPDOUT PERCH   SPOTTAIL SHINER   YELLOK PERCH	$\begin{array}{r} 12 \\ 7 \\ 4 \\ 8 \\ 17 \end{array}$	$\begin{array}{r} 500 \\ 200 \\ 50 \\ 100 \\ 3000 \end{array}$	$\begin{aligned} & 174-198 \\ & 164-180 \\ & 112-125 \\ & 107-120 \\ & 144-340 \end{aligned}$
		4	ATIIFE   RAINEOW SMELT   TRCUT PERCH   PGU'VD WHITEFISH   SHITE SUCKER   SPOTTAIL SHINER.   YELLOW PERCH	$\begin{array}{r} 10 \\ 4 \\ 3 \\ 1 \\ 2 \\ 12 \\ 23 \end{array}$	$\begin{array}{r} 445 \\ 150 \\ 50 \\ 50 \\ 2150 \\ 200 \\ 3400 \end{array}$	$\begin{gathered} 158-187 \\ 156-179 \\ 110-124 \\ 176 \\ 337-520 \\ 107-122 \\ 142-265 \end{gathered}$
	IV	3	ALEWIFE   RAINUOW SMELT   CHANNEL CATFISH   TRUUT PERCH   WHITE SUCKER   SPOTTAIL SHINER   WALLEYE	$\begin{array}{r} 168 \\ 1 \\ 1 \\ 12 \\ 5 \\ 40 \\ 1 \end{array}$	$\begin{array}{r} 5950 \\ 22 \\ 300 \\ 150 \\ 3725 \\ 560 \\ 500 \end{array}$	$\begin{gathered} 162-195 \\ 162 \\ 345 \\ 102-122 \\ 371-440 \\ 94-124 \\ 360 \end{gathered}$
		4	ALEDIFE   RAINPOU SMELT   TROUT PERCH   SPOTTAIL SHINER   YELL I'd PERCH   V'ALLEYE	$\begin{array}{r} 2 \\ 1 \\ 18 \\ 19 \\ 8 \\ 1 \end{array}$	$\begin{array}{r} 100 \\ 50 \\ 300 \\ 250 \\ 2950 \\ 400 \end{array}$	$\begin{gathered} 177-180 \\ 205 \\ 101-130 \\ 105-120 \\ 190-348 \\ 337 \end{gathered}$
	V I	3	```AL E'n\IFE THOUT PERCH SPOTTAIL SHINER YFLLON PERCH```	$\begin{array}{r} 200 \\ 4 \\ 32 \\ 3 \end{array}$	$\begin{array}{r} 7000 \\ 50 \\ 410 \\ 863 \end{array}$	$\begin{aligned} & 160-193 \\ & 117-132 \\ & 105-121 \\ & 185-337 \end{aligned}$
		4	ALCNIFE   RAIVBJW SMELT   TRUUT PERCH   SPUTTAIL SHINER   YELLOW PERCH	$\begin{array}{r} 39 \\ 1 \\ 9 \\ 17 \\ 4 \end{array}$	$\begin{array}{r} 1550 \\ 20 \\ 175 \\ 230 \\ 605 \end{array}$	$\begin{gathered} 162-194 \\ 159 \\ 111-131 \\ 108-125 \\ 196-256 \end{gathered}$


fiare	TRASOSCCT	STATION	SPECIES	TOTAI. NO.	$\begin{aligned} & \text { Tornt } \\ & \text { n'FI } 16, h 1 \\ & \text { (c) } \end{aligned}$	LE:GTH      ( H 洔)
7/15/E1	I	3	A) EUIFE	24	1175	148-18:9
			WHITE SUCKE?	2	750	$337-3 / 6$
			SPITTMAIL Sitivip	4	50	111-11?
			Yetilisi Pekcry	4	8? 0	235-274
			WALLEYE	6	5950	$3400-655$
		4	ALEWIFE	23	850	140-201
			WHITE SUCKER	4	1370	275-310
			SPOIIAIL SHINEK	3	30	115-123
			YELCON PERCH	8	2320	165-340
	IV	3	ALEWIFE	6	170	160-173
			WHIIL SUCKER	1	650	385
			Sílittail Shiner	1	15	110
			YELLON PERCH	3	555	142-231
			WhLLEYE	7	1920	259-360
		4	AL EWIIE	12	350	157-186
			WHITE SUCKER	2	480	74-360
			SPOTTAIL SHINER	2	20	115-117
			YELLOW PERCH	3	300	170-200
			WA! LEYE	6	2250	312-470
	VI	3	ALEWICE	27	820	103-181
			SPUTTAIL SHINEP.	4	40	113-118
			YELLOW PERCH	7	1500	145-294
			WALLEYE	3	1750	323-435
		4	AL ESIFE	24	856	144-189
			WHITE SUCKE?	5	2950	345-411
			SPUTTAIL SHINER	5	40	112-133
			YELLOU PERCH	1	55	174
			WfLLEYE	5	3115	323-479
10/6/81	1	3	EURPOT	1	1500	585
			TRUUT PERCH	1	5	102
			CHINDOK SALMON	1	4900	770
			LAKE TROUT	7	24850	620-785
			COHIT SALIAON	1	750	380
			WHITE SUCKER	1	700	375
			ROCKBASS	1	210	212
		4	RAINBOH SMELT	2	30	150-180
			LASE TROUT	4	15650	740-774
			WHITE SUCKER	2	515	220-330
			SPJTTAIL SHINER	2	20	110-120
	IV	3	LAKE TROUT	6	24,700	697-779
		4	LARE PROUT	6	22200	605-775
			WHITE SUCKER	1	950	425
			WALTEYE	2	500	295-298
	VI	3	GIIZARD SHAD	1	110	203
			TPUUT PERCH	1	10	107
			LAKP' Trour	7	22450	$59 t-730$
			UNIDENTIFIED REDIJRSE	1	850	417
		4	RAINROW SHELT	1	5	110
			BUP的OT	1	1300	567
			CHINOOK SALMON	1	7800	891
			SPOTTAIL SHINEF	1	10	110
			WALLEYE	2	1280	302-476

## APPENDIX E

FISH DATA (BEACH SEINE)

DATE	TRANSECT	STATTOH	Sticies	$\begin{aligned} & \text { TOTAL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} 10191 \\ \text { WEI } 10,19 T \\ (6,) \end{gathered}$	$\begin{aligned} & \text { LEHFYH } \\ & \text { PASO, } \\ & \text { (NAB: } \end{aligned}$
$6 / 12180$	$I$	1	AL EW:FE	2		\#***
			RAMBBOW SPAELT	2	3	62-75
			TROUT PERCH	51	574	78-120
			CHIVOSく SALMON	d	27	70-79
			CAKP	1	1775	485
			WHITC SUCKEF.	3	16.05	361-3883
			EMERAR [ SHIPER	106	28.0	$45-105$
			SPOTIAIL SHIMER	91	653	$50-116$
			SAHO SHITER	107	163	47-70
			FLATHEAD MIMAOH	2	3	$44-53$
			LfP!inOSE OACE	5	17	66-80
			MUTTLEO SCULPIN	2	3	48
	IV	1	M E:HFE	33	1275	262-195
			RAIHEOW SNEEY	2	2	49-56
			TRDUT PEXCH	132	1268	64-130
			CHINOUK SALMON	1	1	74
			CAkP	1	3700	637
			WHITE SUCKE?	1	825	428
			EMERALD SHINER.	11	37	66-94
			SPOTTAIL SHINEP.	116	929	80-113
			SA:VD SHINER.	2	3	58-63
			LOMGNOSE DACE	23	71	$54-52$
	VI	1	ALEMIFE	14		81-185
			P.hINEOW SMELT	1	1	53
			TPJUUT PERC4	33	318	69-134
			FPESHWATER DRUM	1	258	300
			CARP	2	4915	505-570
			EIAERALO SHINER	13	32	62-92
			SPOTTAIL SHIPER	30	176	41-132
			SGIND SHINER	1	1	52
7/24/80	1	1	ALEUIFE	2	32	52-83
			TPOUT PERCH	107	757	44-124
			CARP	1	3300	603
			EMERALD SHINER	53	163	59-91
			SPOITAIL. SHINER	130	767	46-117
			SANU SHINER	23	42	54-74
			LOAGNOSE DACE	6	13	53-77
	IV	1	ALEAIFE	4	90	84-187
			TROUT PERCH	144	948	63-129
			EMERALU SHINER	4	16	72-94
			SPCTTAIL SHINEP.	223	1701	56-113
			L ONG:OSE DACE	23	6,1	53-86
			JOHNAT DAATEER	1		41
			LOGPEPCH	2		67-72
			YEILDN PEREH	1		68
	VI	1	ALEWIFE	1	28	157
			RAINBOW SIAELT	1	1	31
			TRUUT PERCH	144	432	46-110
			WHITE SUCRER	2	720	275-365
			EMERALD SHMNE₹	9	24	71-95
			SPOTIAIL SHINER	152	1015	42-11\%
			SANi) SHIyEP.	5	11	53-68
			LOGPERCH	1	4	96
			YELLOW PERCH	10	1204	101-237

1/ - Indicates that no measurcments were loken.

DATE	TRANSFCT	STATICN	SPECIES	total NO.	$\begin{gathered} \text { MOTAL } \\ \text { h'EIGHT } \\ \text { (G) } \end{gathered}$	$\begin{aligned} & \text { LENGTH } \\ & \text { RAMGE } \\ & (\text { (MH) } \end{aligned}$
10/20/80	1	1	GIZZARO S:3AD	1328	19175	62-180
			RAINEOW TROUT	1	300	270
			E*SRALD SHIAEER	7	22	69-85
	IV	1	gITzARO Shat	277	1730	60-145
			FWIMPED'd SMELT	19	14	46-67
			EMERAD SHINER	8	28	78-91
			SPOTTAIL SHINER	1	5	87
			SAVD SHiJver	3	5	52-62
			LONGNOSE DACE	117	363	41-91
			LOGPERCH	3	20	91-92
			RIVE'S SARTER	3	3	43-55
			Motileo sculpin	2	26	37-77
	V I	1	GIZZARD SHAD	1568	12500	64-172
			PAIMBOW SMELT	8	5	44-64
			LASE TRJUT	1	2000	590
			ERERALD SHINER	1	4	89
			SPOTTAIL SHINEG	4	16	51-113
			NOTTLED SCULPIN	1	4	64
6/10/81	I	1	LLESIFE	103	3910	74-197
			PAINPOW SMELT	12	280	144-185
			TPOUT PERCH	50	515	77-123
			CHINOSK SALMON	14	55	66-85
			WHITE SUCKEP.	2	1280	367-419
			EMERALD SHINER	82	420	72-101
			SPUTTAIL SHINER	63	590	80-117
			SAND SHINER	3	4	52-67
			LONGNOSE DACE	8	16	50-73
			ROCKBASS	1	280	215
			YELLON PERCH	1	125	217
	IV	1	- ALEWIFE	52	1846	89-199
			TROUT PERCH	284	2459	70-129
			CHINOOK SALMON	2	12	174-176
			EMERALO SHINE?	38	175	78-102
			SPOTTAIL SHINER	43	398	80-116
			SAND SHINER	2	2	56-57
			LUNGNOSE DACE	1	5	97
	V I	1	ALEWIFE	79	3195	157-197
			GIZZARD SHAD	1	950	452
			TREUT PERCH	37	318	75-124
			CHINOOK SALMOA	16	58	65-82
			VIHITE SUCKER	1	1125	440
			EMERALD SHINER	132	585	73-100
			SPOTTAIL SHINER	144	1270	77-112
			YELLCH PEPCH	2	550	239-291
			n'ulleye	1	410	357
			NOTTLED SCULPIN	3	8	47-57


URTE	TPANSECT	STATIOI	SPECIES	tOTAL NU.	$\begin{aligned} & \text { TOTGL } \\ & \text { WEIGHT } \\ & \text { ( } 1 \text { ) } \end{aligned}$	$\begin{aligned} & \text { LENGTH } \\ & \text { RANGE } \\ & \text { (保) } \end{aligned}$
7/15/81	1	1	ALEWIFE	3	107	136-149
			CARP	1	675	675
			EMEPALD SHINER	3	20	70-105
			SPOTTAIL SHINER	2	18	e8-92
			LONGNOSE DACE	1	5	66
	IV	1	ALEWIFE	7	148	130-162
			TROUT FERCH	1	ठ	86
			EMERALU SHINER	1	8	74
			SPOTTAIL SHIVER	3	22	87-96
			LONGNOSE DACE	1	9	90
	VI	1	TROUT PERCH	6	28	60-96
			EMERALD SHIVER	2	7	68-74
			SPOTTAIL SHINER	29	217	66-111
			SAND SHINE?	1	3	57
			LONGNOSE DACE	1	3	58
			mottleo sculpin	1	5	59
11/22/81	i	1	GIZZARO SHAD	6	95	88-168
			SPJTTAIL SHIVER	1	18	106
			SAND SHINER	13	20	34-68
			bluntadose minndw	2	6	51-70
			lonighose dace	2	5	67-68
			MOTTLEO SCULPIN	1	2	40
	IV	1	GIZZARD SHAD	7	c 5	87-127
			RAINGON S ${ }^{\text {PILLT }}$	1	7	108
			EMEPALD SHITER	8	20	42-93
			MOTTLED SCULPIN	1	5	66
	VI	1	GIZZARD SHAD	10	78	70-122
			RAINBJW SMELT	1	8	117
			EMERALD SHINER	1	2	56
			SAND SHINER	8	10	53-65


Nester, Robert T.   Effects of beach nourishment on the nearshore environment in Lake Huron at Lexington Harbor (Michigan) / by Robert T. Nester and Thomas P. Poe--Fort Belvoir, Va. : U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Springfield, Va. : available from NTIS, 1982.   [56] p. ill. ; $28 \mathrm{~cm} .-$ (Miscellaneous report / Coastal Engineering Research Center ; no. 82-13)   Cover title.   "November 1982."   This report, a study conducted by U.S. Fish and Wildlife Service's Great Lakes Fishery Laboratory, provides effects of beach nourishment activities on the nearshore aquatic environment at Lexington Harbor.   1. Beach nourishment. 2. Biological effects. 3. Lake Huron.   4. Lexington Harbor, Michigan. I. Title. II. Poe, Thomas P.   III. Coastal Engineering Research Center (U.S.). IV. Series:   Miscellaneous report (Coastal Engineering Research Center (U.S.)); no. 82-13.   TC203   .US81mr $\text { no. } 82-13$	Nester, Robert T.   Effects of beach nourishment on the nearshore environment in Lake Huron at Lexington Harbor (Michigan) / by Robert T. Nester and Thomas P. Poe--Fort Belvoir, Va. : U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Springfield, Va. : available from NTIS, 1982.   [56] p. ill. ; $28 \mathrm{~cm} .-$ (Miscellaneous report / Coastal Engineering Research Center ; no. 82-13)   Cover title.   "November 1982."   This report, a study conducted by U.S. Fish and Wildife Service's Great Lakes Fishery Laboratory, provides effects of beach nourishment activities on the nearshore aquatic environment at Lexington Harbor.   1. Beach nourishment. 2. Biological effects. 3. Lake Huron.   4. Lexington Harbor, Michigan. I. Title. II. Poe, Thomas P. III. Coastal Engineering Research Center (U.S.). IV. Series: Miscellaneous report (Coastal Engineering Research Center (U.S.)); no. 82-13.   TC203   .U581mr no. 82-13
Nester, Robert T.   Effects of beach nourishment on the nearshore environment in Lake Huron at Lexington Harbor (Michigan) / by Robert T. Nester and Thomas P. Poe--Fort Belvoir, Va. : U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Springfield, Va. : available from NTIS, 1982.   [56] p. ill. ; $28 \mathrm{~cm} .-$ (Miscellaneous report / Coastal Engineering Research Center ; no. 82-13)   Cover title.   "November 1982."   This report, a study conducted by U.S. Fish and Wildlife Service's Great Lakes Fishery Laboratory, provides effects of beach nourishment activities on the nearshore aquatic environment at Lexington Harbor.   1. Beach nourishment. 2. Biological effects. 3. Lake Huron.   4. Lexington Harbor, Michigan. I. Title. II. Poe, Thomas P. III. Coastal Engineering Research Center (U.S.). IV. Series:   Miscellaneous report (Coastal Engineering Research Center (U.S.)); nо. 82-13.   TC203   . U 58 Imr   no. 82-13	Nester, Robert T.   Effects of beach nourishment on the nearshore environment in Lake Huron at Lexington Harbor (Michigan) / by Robert T. Nester and Thomas P. Poe--Fort Belvoir, Va. : U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Springfield, Va. : available from NTIS, 1982.   [56] p. ill. ; $28 \mathrm{~cm} .-$ (Miscellaneous report / Coastal Engineering Research Center ; no. 82-13)   Cover title.   "November 1982."   This report, a study conducted by U.S. Fish and Wildlife Service's Great Lakes Fishery Laboratory, provides effects of beach nourishment activities on the nearshore aquatic environment at Lexington Harbor.   1. Beach nourishment. 2. Biological effects. 3. Lake Huron.   4. Lexington Harbor, Michigan. I. Title. II. Poe, Thomas P. III. Coastal Engineering Research Center (U.S.). IV. Series: Miscellaneous report (Coastal Engineering Research Center (U.S.)); no. 82-13.   TC203   . $\mathrm{U5} 81 \mathrm{mr}$ no. 82-13


[^0]:    ${ }^{1}$ To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: $C=(5 / 9)(F-32)$.

    To obtain Kelvin (K) readings, use formula: $K=(5 / 9)(F-32)+273.15$.

[^1]:    Lake sturgeon
    Alewife
    Gizzara shad
    Rairbow smelt
    Black bullhead
    Channel catfish
    Burbot
    Troutperch
    Freshwater drum
    Round whitefish
    Chinook salmon
    Rainhow trout
    Erown trout
    Lake trout
    Coho salmon
    Carp
    White sucker
    Unidentifiea redhorse
    Emerald shiner
    Spottail shiner
    Sand shiner
    Bluntnose minnow
    Fathead minnow
    Longnose dace
    Rockbass
    Johnny darter
    Logperch
    River darter
    Yellow pech
    Walleye
    Mottled sculpin

